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Summary: The tricyclic skeleton of taxol has been 
synthesized. The most challenging eight-membered ring 
was constructed through an intramolecular nucleophilic 
allylic bromidealdehyde addition reaction promoted by 
Zn-Cu couple. 

The promising anticancer activity' of the diterpenoid 
taxo12 (1; Scheme I) combined with its structural com- 
plexity and limited availability have engendered worldwide 
intensive studies toward its total The syn- 
thetic studies may play a very important role in the search 
for taxol analogs or second-round drug candidates. We 
describe here a novel synthetic approach to the tricyclic 
framework 2 of taxol. 

According to our synthetic strategy (Scheme I), the eight- 
membered ring is envisioned to be assembled by either a 
one-step annulation reaction or sequential addition and 
ring-closure reactions of keto aldehyde 3 with a dianionic 
2,3-dimethylenebutadiene species 4. The product ob- 
tained by this type of ring closure conserves the feature 
of an exocyclic cis fixed 1,3-diene and may thus be further 
used in a subsequent Diels-Alder reaction to form the 
C-ring system of taxol. 

The synthesis began with the preparation of the keto 
aldehyde 3 (Scheme 11). Heating the readily available 
mono-protected 1,3-diketone 5e with p-toluenesulfono- 
hydrazide in ethanol resulted in the formation of hydrazone 
6 in quantitative yield. Treatment of 6 with 4 equiv of 
n-butyllithium, followed by trapping of the resulting 
alkenyllithium intermediate with excess Nfl-dimethyl- 
formamide, provided cu,@-unsaturated aldehyde 7 in ex- 
cellent yield.' Acidic hydrolysis of 7 furnished the 
corresponding keto aldehyde 3. 
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Having completed the synthesis of 3, we first explored 
the possibility of direct annulation of 3 with the dianionic 
species 4 generated in situ from dibromide 88 upon 
treatment with excess reducing metal or low-valent metal 
 halide^.^ Unfortunately, the only observed products are 
the monoaddition compound 9 and its debrominated form 
10 under the conditions we employed, such as Zn-Cu 
couple,10 CrC12,I1 or Sm12.12 These results might be due 
to the steric hindrance surrounding the keto group of 3 or 
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the unfwored conformation of the initial adduct 9 for 
further ring closure. 

To overcome thb  problem, we decided to reverse the 
order of bond formation. It was reasoned that the only 
feasible way for the ring closure is through an intramo- 
lecular cycloaddition onto the aldehyde group afbr bond 
formation at the keto group of 3. Thus, the aldehyde group 
of 3 was selectively protected aa a dimethyl acetal group 
to give 11 (Scheme 111). Treatment of 11 with lP3 and 
freshly prepared Zn-Cu couple in THF under refluxing 
conditions afforded tertiary alcohol 13 in 96% yield. The 
tertiary alcohol of 13 was protected as the MEM ether, 
and subsequent desilylation provided allylic alcohol 14. 
Bromination of 14, followed by silica gel chromatography, 
gave rise to 15 in a single step. After several unsuccessful 
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attempts to promote the ring closure of 15 under a variety 
of conditions with CrC12 or SmIz, we were delighted to 
find that, upon treatment with Zn-Cu couple in refluxing 
THF, 15 smoothly cyclized to provide the bicyclo[5.3.11 
ring system 16 as a single stereoisomer in 87 7% yield. This 
represents one of the few examples of macrocyclization 
mediated by a zinc species.14 Apparently, the unusually 
high reactivity of the allylzinc intermediate prevailed over 
the steric hindrance and the unfavored entropy involved 
in the eight-membered ring closure. The stereochemistry 
of 16 was determined by NOE experiments and subsequent 
X-ray crystallographic analysis of its benzoate derivative 
17.15 Finally, the feasibility of constructing the C ring 
was demonstrated by a Diels-Alder reaction employing 
the diene unit of 17. Heating 17 with dimethyl acety- 
lenedicarboxylate resulted in the formation of the tricyclic 
skeleton 18 of taxol in quantitative yield. In analogy to 
the observations of othersPJ6 tricycle 18 appears in the 
300-MHz NMR spectrum at 25 OC as a 3:2 mixture of two 
slowly interconverting conformational isomers. Fast ex- 
change on the lH NMR time scale at 300 MHz is achieved 
at 105 O C  for the material dissolved in toluene-&. 

In summary, a new strategy has been describerd for the 
synthesis of tricyclic skeleton of taxol. The high-yielding 
direct formation of the eight-membered ring is specially 
noteworthy. Progress directed toward the total synthesis 
of taxol and potentially useful analogs will be reported in 
due course. 
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